CH 105 Supplemental Instruction

Leader: Hilary Flippo

Email: hflippo@uab.edu

Website: CH105.yolasite.com

Sessions: Monday, 1:15-2:15, EB 128

Wednesday, 3:30-4:30, EB 133

Office Hour: Thursday, 3:30-4:30, EB 242 (Academic Success Center)

Acids and Bases Cont.

- 1. Weak acids have a SMAN Ka and strong acids have a Large Ka.
- 2. What is the equation for K_W and what is the numerical value? Yw=1.00 × 10-14 * H30+=H+ Kw= [H30+][OH-]
- 3. When an acid is added to solution, $\frac{H30^+}{}$ increases. When base is added to solution, $\frac{OH^-}{}$ increases.
- 4. What is the [H⁺] of a sample of lake water with [OH] of 4.0 x 10⁻⁹ M? Is the lake acidic, basic, or neutral?

$$\frac{\text{Kw} \cdot \text{CH} + \text{J} \cdot \text{COH} - \text{J}}{\text{KW} \cdot \text{CH} + \text{J} \cdot \text{COH} - \text{J}} = \frac{\text{KW}}{\text{COH} - \text{J}} = \frac{\text{KW}}{\text{J}} = \frac{\text{KW}}{\text{COH} - \text{J}} = \frac{\text{KW}}{\text{COH} - \text{J}}$$

5. What is the [H] of human saliva if its [OH] is 4 x 10⁻⁸ M? Is human saliva acidic, basic, or neutral?

$$[H^{+}] = \frac{V \cdot v}{[OH^{-}]} = \frac{1.00 \times 10^{-14}}{4 \times 10^{-8}} = 2.6 \times 10^{-7} \text{ MOUGUANTONY}$$

$$[U.U. Slightly bracked]$$

$$Vaccound Saly towards$$

6. Describe the pH for an acidic solution, a basic solution, and a neutral solution.

7. Mathematically, what is pH?

8. Calculate the [OH] of a solution of baking soda with a pH of 8.5.

$$14=pH+pOH$$
 $[0H^{-}]=10^{n}(-pOH)$
 $pOH=14-8.5$ $[0H^{-}]=10^{n}(-s.s)=3.2\times10^{-4}M$